Los métodos de Adams-Moulton se parecen a los métodos de Adams-Bashforth en que también tienen y . De nuevo se eligen los coeficientes "b" para obtener el orden más alto posible. Sin embargo, los métodos de Adams-Moulton son métodos implícitos. Al eliminar la restricción de que , un método de Adams-Moulton "paso a paso" puede alcanzar el orden , mientras que los métodos de Adams-Bashforth en el paso s solo tienen orden s.
Los métodos de Adams-Moulton con s = 0, 1, 2, 3, 4 son (Hairer, Nørsett y Wanner, 1993, §III.1; Quarteroni, Sacco y Saleri, 2000):
La deducción de los métodos de Adams-Moulton es similar a la del método de Adams-Bashforth; sin embargo, el polinomio de interpolación utiliza no solo los puntos , como anteriormente, sino también . Los coeficientes vienen dados por
Los métodos de Adams-Moulton se deben únicamente a John Couch Adams, al igual que los métodos de Adams-Bashforth. El nombre de Forest Ray Moulton se asoció con estos métodos porque se dio cuenta de que podrían ser utilizados en tándem con los métodos de Adams-Bashforth como un par de métodos predictor-corrector (Moulton, 1926); Milne (1926) tenía la misma idea. Adams utilizó el método de Newton para resolver la ecuación implícita (Hairer, Nørsett y Wanner, 1993, §III.1).
Comentarios
Publicar un comentario