Los métodos de Adams-Moulton se parecen a los métodos de Adams-Bashforth en que también tienen y . De nuevo se eligen los coeficientes "b" para obtener el orden más alto posible. Sin embargo, los métodos de Adams-Moulton son métodos implícitos. Al eliminar la restricción de que , un método de Adams-Moulton "paso a paso" puede alcanzar el orden , mientras que los métodos de Adams-Bashforth en el paso s solo tienen orden s . Los métodos de Adams-Moulton con s = 0, 1, 2, 3, 4 son ( Hairer, Nørsett y Wanner, 1993 , §III.1; Quarteroni, Sacco y Saleri, 2000 ): {\displaystyle {\begin{aligned}y_{n}&=y_{n-1}+hf(t_{n},y_{n}),\qquad {\text{(este paso es el método de Euler hacia atrás)}}\\y_{n+1}&=y_{n}+{\frac {1}{2}}h\left(f(t_{n+1},y_{n+1})+f(t_{n},y_{n})\right),\qquad {\text{(este paso es la regla trapezoidal)}}\\y_{n+2}&=y_{n+1}+h\left({\frac {5}{12}}f(t_{n+2},y_{n+2})+{\frac {2}{3}}f(t_{n+1},y_{n+1})-{\frac {1}{12}}f...